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1 Introduction & Data

This project aims to do a multi-class classification on tweets. The "success” of any of the methods
we have run, is based on the cost returned to us by the leaderboard. The data provided was as
follows:

e train.mat : This contained X train_bag, Y _train and train_raw. As the name suggests,
X train_bag was the training data set. This was a sparse matrix, which had under each
feature(columns), the number of times each word from the vocabulary set had been seen in
the respective tweet (rows). train_raw had the raw tweets.

e validation.mat : This contained X walidation_bag,and validation_raw. These data sets are
to validate our classification.

e vocabulary.mat : This contained just a single row matrix of strings containing all possible
words in the vocabulary of the data set.
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Figure 1: 2D reduction of entire data (t-SNE), Selected Labels: Joy and Sadness

The figure on the left is the 2D representation of the entire dataset using the t-SNE algorithm.
No clear patterns were observed so another plot of only contrasting labels (Joy and Sadness) was
created as shown on the right. There is a visible division between the joy labels(red) and sadness
labels(blue) that could be classified fairly well using a linear decision boundary. This was the first
clue that models generating linear decision boundaries can work well with this dataset.

2 Initial Methods - Baseline 1

For this baseline, it was our first attempt to just run a variety of models on the data, without any
pre-processing. The methods we tried were as follows:



e Logistic Regression We used liblinear package to train the model using multi-class logistic
regression. We obtain the probabilities of each observation belonging to class 1 through 5.
Here, we used the asymmetric cost matrix multiplied with the obtained probabilities. This
gives us the cost of misclassification given a prediction. We chose the label with minimum
cost as the prediction.

e Naive Bayes We used the ’fitcnb’ function in MATLAB with a multinomial distribution to
train our model parameters using the given training bag-of-words. This gave us a validation
cost of 0.9447. Since Naive Bayes works well for most text classification purposes, this
was our first attempt. Although the obtained cost is pretty decent for a basic model like
Naive Bayes, it wasn’t the best performing model because of the conditional independence
assumption it makes on the features.Since we dealt with a bag of words model, Naive Bayes
assumed each word to be independent of the other in a tweet. This is not a great assumption
since it misses out on capturing context. An improvement to Naive Bayes could have been
achieved by generating bi-grams instead of the currently used uni-grams. Although we did
generate bi-grams(See Appendix) from the raw texts to test this hypothesis, the number of
features exploded to 134,000 from the current 10,00 and it became too large to model in the
specified time. We would like to develop a feature selection routine for the bi-gram model to
test the algorithm’s performance in the future.

e SVM We used the 'svmtrain’ function from MATLAB’s libsvm package to train our SVM
models. The ’svmpredict’ function was used to generate probabilities for each label for each
tweet. These probabilities were multiplied with the cost matrix to generate mean loss for
each label. The label with the lowest mean loss was selected as the final prediction for an
input tweet. We trained SVM models with both polynomial and rbf kernels. Cross validation
was performed to tune the degree and cost parameters for the polynomial kernel and kernel
width and cost parameters for the rbf kernel.

3 Continuing Methods - Baseline 2 and onwards

3.1 Pre-processing the bag of words

After successfully crossing Baseline 1, we started trying many different preprocessing approaches
to reduce the number of dimensions and normalize the data in order to get to a lower cost. They
are as follows:

e Feature Selection:

— Grouping Words which mean the same thing: For this, we grouped features which meant
the exact same word, since we assumed they would imply the same sentiment. For
example, we grouped ”tomorrow” and ”2morrow”

— Grouping singular and plural of the same word: For this, we grouped the singular and
plural of nouns such as ”text and ”texts”

— Grouping smileys: Here, smiley icons which meant the same thing were grouped - such
as 77:)’7 a,nd 77:]’7
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o Remowving Numbers: We assumed that numerical values wouldn’t add or take much from the

3.2

sentiment of a tweet, and for this reason we experimented with removing all number-features.
There were about 240 such features.

Removing "<user>”: All usernames were represented as <user>. We removed these features
as they do not add to the sentiment of the sentence.

Term Frequency-Inverse Document Frequency (TF-IDF): TF-IDF pre-processes to
data to remove bias on sentence length and by giving lesser weight to stopwords. We tried two
variations of TF-IDF and achieved significantly different results. As a step prior to TF-IDF,
we normalized each word count by dividing it by total number of words in a given tweet.
These are mentioned below:

— Regular Method:

N
tfidf(t,D) = fi.p * log (IdGD:tGdI>

— Logarithmic Method:

‘ N
tfldf(t,D) = 10g<1 + ft,D) *log <1 + |d cD:te d|>

We obtained our best cost using logarithmic TF-IDF.

Term Frequency-Inverse Gravity Moment (TF-IGM): We read through research pa-
pers and found another pre-proceessing approach that supposedly works better than TF-IDF.
This methods measure the class-distinguishing power of a term. However, We obtained a cost
higher than TF-IDF, so we chose to not use TF-IGM.

Other models

K-Nearest Neighbours

Given the nature of the algorithm, testing the model takes a long time as there are 10000
features for each of the 18,000 examples and euclidean distance computation is expensive.
Cross-validation cost obtained was not up to the mark (over 1.2). This makes sense because
predictions based on euclidean distance similarity in such high dimensions is probably just
modeling noise.

Principal Component Analysis

We tried reducing the dimensionality of the input data using sparse SVD (Singular Value
Decomposition) and then picking K eigenvectors with maximum eigenvalues to obtain reduced
dimensions. We found two flaws with using this approach, which are as mentioned below:

— Singular Value Decomposition over a 10000 feature bag of words is very expensive. Since
Dimensionality Reduction has to be performed over both training and testing data, it
was infeasible for us to utilize PCA for the leaderboard submission.

— We feel that Principle Component Analysis is not suitable for text classification purposes
and it makes the data very complex as a lot of features are removed (sparsity doesn’t
stay anymore)
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e Linear Discriminant Analysis
We used the ’fitediser’ function in MATLAB to fit a linear discriminant model to our data.
The model assumes X has a Gaussian mixture distribution. The model generated was 1.4GB
in size, so we could not test it on the validation set.

4 Results

e Logistic Regression

Regularization Constant = 1 (obtained using cross validation; figure below)

G lidation Cost - Logistic

10-Fold Gost
15 L

0 1 2 3 4 5 6 7 8 9 10
C (Regularization Parameter)

Figure 2: Cross-Validation Error vs Regularization Parameter

We used the processed data using logarithmic approach of TF-IDF mentioned in the previous
section for this model.

Cost on validation set: 0.9161

Logistic Regression offered the best performance. Logistic Regression outperformed SVM in
our analysis. One hypothesis for this is that SVM optimizes the hinge loss, so it doesn’t care
how far away from the decision boundary a point is as long as it’s beyond the margin. In high
dimensional space this can be problematic as decision boundaries are not so clearly defined.
In contrast the Logistic Loss is continuous and hence the loss is never zero; it always pushes
to reduce misclassification. Moreover, we justified why Naive Bayes couldn’t perform as well
as Logistic Regression in Section 2.

e Support Vector Machines The first attempt was to train an SVM model with polynomial
kernel.

In order to tune the two parameters - degree of polynomial and regularization parameter,
a two-dimensional 5-fold cross validation was performed. Polynomial degree of 1 and reg-
ularization parameter C = 1 corresponded to the smallest cross-validation errors. In order
to visualize these results, we held the regularization parameter C fixed at 1 and plotted the
variation of Degree. Thereafter, the degree was fixed at 1 and the regularization parameter
C was plotted(Figure 3).

Cost on validation set: 0.949
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Cross Validation plot for poly-kerel SYM Cross Validation plot for poly-kernel SVM

Degree Regularization Parameter (C)

Figure 3: CV Error vs Degree, CV Error vs Regularization Parameter

The next attempt was to train an SVM model with RBF kernel.

Cross Validation plot for rbf-kernel SVM Gross Validation plot for rbf-kernel SVM
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Figure 4: CV Error vs Kernel Width, CV Error vs Regularization Parameter

Again we tuned two parameters - Kernel width (o) and Regularization parameter (C). A two-
dimensional 5-fold cross validation was performed. Kernel Width of ¢ = 0.1 and regularization
parameter C = 10 corresponded to the smallest cross-validation errors.

Cost on validation set: 0.955

The Linear Kernel performed better than the higher dimensional kernels because we are
already in very high dimensional space with not enough data points (the number of data
points is similar to the number of features). In such a scenario fitting a high order kernel
would be equivalent to fitting a very complicated function to a few data points and hence
would result in over-fitting.

Principal Component Analysis

Cost obtained with PCA with 10 principal components: 1.4493
This cost reduces as the number of principle components are increased but the code starts
to take very long time. However, we are never able to achieve a cost as good as logistic
regression. The reason for this is explained in section 3.2.
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5 Summary and Conclusion

Logistic Regression with TF-IDF - Cost = 0.9161
Naive Bayes - Cost = 0.9447
K-nearest Neighbors - Cost = 1.2 (cross validation cost)

Note: Our reasoning for these costs is mentioned in individual sections above.

After all the methods we attempted, it appears that the least cost was obtained using the Lo-
gistic Regression model with logarithmic TF-IDF. It gave us our minimum cost of 0.9161. We
noticed that the pre-processing of the data also did consistently reduce our cost, since it was help-
ing normalization. However, we did try our best to watch out to not over-fit. We feel a more
optimal model could have been reached with an ensemble possibly of SVM, Logistic Regression and
Naive Bayes.
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7 Appendix

We made an attempt to improve the performance of Naive Bayes by generating bi-grams. Here is
the code for generating bi-grams:

p={};

for i =l:length(train_raw)
train.raw{i} = erase(train.raw{i}, "<user>");
train.raw{i} = erase(train_raw{i}, stopwords);
$Idx = regexp(train_raw{i}, '"[",@#%S$_+="1");
Idx = regexp(train.raw{i}, '[A-Z a-z]'");
train.raw{i} = train.raw{i} (Idx);
train.raw{i} = strtrim(train_raw{i});
train.raw{i} = regexprep(train-raw{i},' +',"' ");
out=regexp (train.raw{i}, '\s+', 'split');
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b{i} = cellfun(@(x,y) [x ' ' yl,out(l:end-1)', out(2:end)','un',0)"';
end

big=[];
for i =l:length(train_raw)

out=regexp (train.raw{i}, "\s+', 'split');

big = horzcat (big,cellfun(@(x,y) [x ' ' y],out(l:end-1)"', out(2:end)"','un',0)"');
end

bigrams = unique (big);

bi_ind = randperm(length (bigrams), 50000);
bigrams = bigrams (bi_ind);
save ('bigr.mat', '"bigrams"');

% populate bigram matrix
big-train = [];
for 1 = 1l:length(b)

[~,~,ind] = unique (vertcat (bigrams',b{i}"'));

bigrams_lb = ind(l:numel (bigrams')); %// label bigramsl
wordsl_lb = ind(numel (bigrams')+l:end); %// label wordsl
counts = sum(sparse (bsxfun(@eq,bigrams_lb,wordsl_1b"')),2);
out = sparse(counts');

big-train = vertcat (big-train,out);

end

Code to generate t-SNE plots:

f = full(X_train_bag);

°

rng default % for reproducibility

Yid = find(Y-train == 1| Y_train == 2);
Y=Y_train(Yid);

X = X_train_bag(Yid, :)

f2 = full (X);

T = tsne(f2);

gscatter (T(:,1),T(:,2),Y)
title ("Joy-Sadness")

Page 7



	Introduction & Data
	Initial Methods - Baseline 1
	Continuing Methods - Baseline 2 and onwards
	Pre-processing the bag of words
	Other models

	Results
	Summary and Conclusion
	References
	Appendix

